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Abstract

The entropy generation minimization method is applied to the optimization of a buoyancy-driven laminar magnetohydrodynamic flow in a long
vertical rectangular duct with thin conducting or insulating walls. The flow takes place under a strong uniform magnetic field applied transversally
to one pair of walls and is driven by a known constant temperature gradient aligned with the field. Numerical solutions for the velocity and
electric current density in both fluid and walls are calculated using a spectral collocation method. It is shown that an optimum value of the wall
conductance ratio (i.e. the ratio of the electrical conductance of the wall to that of the fluid) that minimizes the global entropy generation rate
can be found. The analysis of the irreversibilities caused by heat conduction, viscosity and Joule dissipation allows to explain the existence of the
optimum value.
© 2007 Elsevier Masson SAS. All rights reserved.
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1. Introduction

Magnetohydrodynamic (MHD) free convection flows are of
considerable interest due to their frequent occurrence in appli-
cations such as crystal growth, metal casting and, in particular,
liquid–metal cooled blankets for fusion reactors. In fact, the
analysis of buoyancy-driven MHD flows in long vertical ducts
is relevant for the separately cooled liquid–metal breeder con-
cepts [1,2]. Unlike self-cooled blankets where buoyant effects
are negligible in comparison with the forced flow driven by
a high-pressure head, in the separately cooled liquid–metal
breeder concepts the liquid metal is used mainly as a breeding
material and the flow induced by non-uniform thermal con-
ditions may be dominant in comparison with the forced flow.
Bühler [1] performed an extensive analysis of buoyancy-driven
laminar MHD flows in long vertical ducts with rectangular
cross section, considering duct walls of arbitrary conductiv-
ity. Using asymptotic analysis, he derived solutions for general
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temperature distributions assuming that a strong uniform mag-
netic field is aligned with one pair of walls. Typical flow subre-
gions, namely, the inviscid core, and Hartmann and side layers,
were identified. Among other interesting results, he found high-
velocity jets along perfectly conducting sidewalls. Tagawa et al.
[2] have also considered the buoyant MHD flow in a long ver-
tical enclosure of square cross section assuming that the duct is
electrically insulated. For the fully developed case, they found
an exact analytical solution in the central region assuming that
the temperature distribution is only determined by heat conduc-
tion. Through an analytical modelling of the Hartmann layers
they were able to establish boundary conditions for both the
core and the side layer flows. In a second paper [3], the same
authors analyzed the problem both experimentally and numer-
ically considering the finite size of the vertical enclosures in
order to determine the inertial effects on the flow. The mag-
netoconvective flow problem in a long vertical duct of square
cross-section and arbitrary conductivity has also been numeri-
cally investigated by Di Piazza and Bühler with a finite volume
method [4].

In the present contribution, the buoyancy-driven MHD flow
in a long vertical rectangular duct is analyzed from an opti-
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Nomenclature

a aspect ratio of the duct
B(Bo) magnetic induction (module) . . . . . . . . . . . . . . . tesla
c wall conductance ratio, σwtw/σL

C specific heat . . . . . . . . . . . . . . . . . . . . . . . . J kg−1 K−1

Ec Eckert number, U2
0 /�T C

F dimensionless potential function
g acceleration of gravity . . . . . . . . . . . . . . . . . . . m s−2

Gr Grashof number, βg�T L3/ν2

h dimensionless electric current stream function
j dimensionless electric current density

vector, σU0B0

jy dimensionless electric current density in the
ŷ-direction, σU0B0

jz dimensionless electric current density in the
ẑ-direction, σU0B0

k fluid thermal conductivity . . . . . . . . . . . W m−1 K−1

L characteristic length, distance between Hartmann
walls . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . m

M Hartmann number, B0L
√

σ/ρν

p dimensionless pressure, σU0B
2
0L

Pe Péclet number, ρCU0L/k

Pr Prandtl number, ρCν/k

Q dimensionless volumetric heat source, k�T/L2

Rm magnetic Reynolds number, μσU0L

Ṡ dimensionless local entropy generation rate per unit
length, k/L2

〈Ṡ〉 dimensionless global entropy generation rate per
unit length

T dimensionless fluid temperature, �T

Td dimensional fluid temperature . . . . . . . . . . . . . . . . K
T0 reference temperature . . . . . . . . . . . . . . . . . . . . . . . . K
tw wall thickness . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . m
u dimensionless fluid velocity vector, U0
u dimensionless axial fluid velocity, U0
Uo characteristic velocity of

the fluid, ρβg�T/σB2
0 . . . . . . . . . . . . . . . . . . . m s−1

x dimensionless axial coordinate in the direction of
acceleration of gravity, L

y dimensionless transversal coordinate in the direc-
tion of the magnetic field, L

ŷ unit vector in the y-direction
z dimensionless transversal coordinate, L

Greek symbols

β thermal expansion coefficient . . . . . . . . . . . . . . K−1

�T characteristic temperature difference . . . . . . . . . . K
φ dimensionless electric potential, U0B0L

μ magnetic permeability of the fluid . . m kg s−2 A−2

ν kinematic viscosity of the fluid . . . . . . . . . . . m2 s−1

σ electrical conductivity of the fluid . . . . . . mho m−1

Subscripts

w wall
opt optimum
mization point of view. The optimization criterium is the min-
imization of the entropy generation rate. In the context of the
classical thermodynamics of irreversible processes [5] station-
ary non-equilibrium states are characterized by a minimum of
the entropy production, compatible with the external constraints
imposed on the system, provided that phenomenological coef-
ficients are assumed constant. For the optimization and mod-
elling of engineering devices, Bejan [6,7] has proposed the
Entropy Production Minimization method in which the main
idea is to carry out the optimization process with the physi-
cal constraints imposed by the irreversibilities produced by the
operating device. This ensures that the intrinsic irreversibilities
associated with a given physical process reach a minimum con-
sistent with the constraints demanded by the system. This opti-
mization method has been applied in a number of heat transfer
and fluid flow problems [7–9] as well as in flows of electrically
conducting fluids under magnetic fields [10–13]. In particular,
Mahmud et al. [12] addressed the analysis of the entropy gen-
eration in a mixed convection channel flow under a transverse
magnetic field as well as in an MHD free convection flow in a
porous square cavity [13].

In this paper, the entropy generation minimization method is
used to determine an optimum value of the wall conductance
ratio that minimizes the global entropy generation rate. This
important parameter is the ratio of the electrical conductance of
the wall to that of the fluid and establishes, to a great extent,
the dynamic behavior of the flow. In fact, it determines, along
with the Hartmann number, the amount of current that circulates
in the fluid and the duct walls. We use a numerical approach
to calculate the velocity and electric current density fields in
a long vertical duct of rectangular cross-section subjected to a
known constant temperature gradient. A very efficient spectral
collocation method, previously applied to the study of pressure
driven MHD flows [14,15], is used for the flow analysis in ducts
with wall conductance ratios ranging from insulating to thin
conducting. A composite core-side-layer solution allows an ex-
plicit resolution of the fully developed flow in the side layers
even for Hartmann numbers as high as 104. Although not re-
solved explicitly, Hartmann layers are considered as a return
path for electrical currents. Once the MHD problem is solved,
the local and global entropy generation rate that considers the
irreversibilities caused by heat flow, fluid friction, and ohmic
or Joule dissipation in both fluid and duct walls are calculated.
Further, the global entropy generation rate is minimized as a
function of the wall conductance ratio. The existence of the
minimum value is explained by looking at the dissipative be-
havior of the flow.
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2. Formulation

We consider the buoyancy-driven flow of a liquid metal in
a long vertical duct of constant rectangular cross-section under
the action of a strong, uniform, horizontal magnetic field. It is
assumed that the duct’s axis lies in the x-direction (the direction
of the acceleration of gravity) while the magnetic field points in
the y-direction, B = Boŷ, being parallel to two of the duct’s
walls. Here Bo and ŷ are the strength of the field and the unit
vector in the y-direction, respectively. We assume the existence
of a constant temperature gradient between the walls transversal
to the field. Therefore, a heat flux antiparallel to the horizontal
magnetic field is produced. A sketch of the problem is shown in
Fig. 1. The temperature difference between the walls originates
a convective motion of the fluid in the vertical direction. More-
over, due to the motion of the fluid in the magnetic field, closed
current loops in the yz-plane, normal to the axial motion, are
induced. Electric currents can circulate either in the fluid or in
the fluid and walls, according to the relative electrical conduc-
tivity of the fluid and walls. We assume the magnetic Reynolds
number, Rm = μσUoL, to be much less than unity so that the
magnetic field induced by electric currents is neglected. Here μ

and σ are the magnetic permeability and electrical conductivity
of the fluid, respectively, while Uo and L are the characteris-
tic velocity and length of the flow, respectively. In this problem,
L is taken as half the distance between the walls of the duct
parallel to the magnetic field.

Under very strong magnetic fields, the flow region splits into
a core surrounded by thin viscous boundary layers. The layers
formed near the walls perpendicular to the externally applied
magnetic field are called the Hartmann layers, while those near
the walls parallel to the magnetic field are called the side lay-
ers. The present analysis is based on the thin conducting wall
approximation, expressed by the condition M−1 � c � 1 [14].
Here, c = σwtw/σL is the wall conductance ratio which ex-

Fig. 1. Sketch of the vertical duct with a uniform magnetic field antiparallel to
the heat flux (T = y). Dotted lines illustrate Hartmann (H ) and side (S) layers.
presses the ratio of the electrical conductance of the wall to
that of the fluid while M = BoL

√
σ/ρν is the Hartmann num-

ber which estimates the magnetic forces compared with viscous
forces; σw and tw are the electrical conductivity and thickness
of the wall, respectively, while ρ and ν are the mass density
and kinematic viscosity of the fluid, respectively. In this work,
the conductivities of all walls are assumed to be the same but
different wall conductivities may also be considered.

The dimensionless system of equations governing the sta-
tionary buoyant magnetohydrodynamic flow of a liquid metal
immersed in a magnetic field is expressed as [1]

∇ · u = 0 (1)
Gr

M4
(u · ∇)u = −∇p + 1

M2
∇2u + j × ŷ + T x̂ (2)

Pe(u · ∇)T = ∇2T + Q (3)

j = −∇φ + u × ŷ (4)

∇ · j = 0 (5)

where the velocity u, the pressure p, the electric current den-
sity j, the electric potential φ and the volumetric heat source
Q, are normalized by U0 = ρβg�T/σB2

0 , σU0B
2
0L, σU0B0,

U0B0L and k�T/L2, respectively. Here T stands for the differ-
ence between the dimensional local temperature Td and a ref-
erence temperature T0, normalized by a characteristic temper-
ature difference �T . In addition, g, k and β are, respectively,
the magnitude of the gravitational acceleration, the thermal con-
ductivity and the thermal expansion coefficient according to the
Boussinesq approximation. The applied magnetic field is nor-
malized by B0 while all length dimensions are normalized by L.
The conservation of mass is expressed through Eq. (1). In turn,
the balances of momentum and energy are given by Eqs. (2)
and (3), respectively. In addition, Ohm’s law is given by Eq. (4)
while electric charge conservation is expressed through Eq. (5).
For the solution of the previous system of equations we follow
the approach presented in [14] for pressure driven MHD flows.

3. Temperature, velocity and electrical current density
fields

As stated by Bühler [1], in general when working fluids
with very high thermal conductivity such as liquid metals and
semiconductors are considered, the convective heat flux can be
neglected if Pe � 1. Under these conditions, the temperature
field becomes independent of the flow and can be determined by
solving ∇2T = −Q with suitable boundary conditions. Since
we assume that the duct is long enough so that the flow is uni-
directional, thermally fully developed conditions hold and the
conductive solution is also valid. Here we consider that the vol-
umetric heat flux is zero and that a constant heat flux crosses
the duct between the Hartmann walls at y = −a (cold wall)
and y = a (hot wall), where a is the duct’s aspect ratio, so that
the temperature field can be expressed as T = y [1]. There-
fore, the heat flux is antiparallel to the applied magnetic field
B. In turn, the side walls at z = −1 and z = 1 are assumed
to be adiabatic. We also assume that there is no externally ap-
plied pressure gradient so that the flow is driven by pure buoy-
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ancy. In general, for large Hartmann number flows such that
Gr/M4 � 1, inertia effects can be neglected in the momentum
balance equation (2). In the present case, as stated above, we as-
sume that the duct is long enough and fully developed flow con-
ditions are also established. Hence, all functions are indepen-
dent of the x-coordinate, in particular, ∂p/∂x = 0. Therefore,
the problem becomes two-dimensional with u = [u(y, z),0,0]
and φ = φ(y, z). Under these conditions, the simplified govern-
ing equations are:

0 = 1

M2

(
∂2u

∂y2
+ ∂2u

∂z2

)
+ ∂φ

∂z
− u + T (6)

jy = −∂φ

∂y
, jz = −∂φ

∂z
+ u (7)

∂jy

∂y
+ ∂jz

∂z
= 0 (8)

where Eq. (6) establishes the balance among viscous, magnetic
and buoyant forces. At the walls, we have to satisfy Ohm’s law
and current conservation

jyw = −
(

σw

σ

)
∂φw

∂y
, jzw = −

(
σw

σ

)
∂φw

∂z
(9)

∂jyw

∂y
+ ∂jzw

∂z
= 0 (10)

where the subindex w denotes a property or variable of the wall.
Eqs. (8) and (10) allow the elimination of the electric current

density by introducing the electric current stream functions h

and hw for the fluid and wall, respectively, defined as

jy = −∂h

∂z
, jz = ∂h

∂y
(11)

jyw = −∂hw

∂z
, jzw = ∂hw

∂y
(12)

In terms of h and hw , Ohm’s law in the fluid and walls, Eqs. (7)
and (9), respectively, can be rewritten as

∂h

∂z
= ∂φ

∂y
,

∂h

∂y
+ ∂φ

∂z
= u (13)

∂hw

∂z
=

(
σw

σ

)
∂φw

∂y
,

∂hw

∂y
+

(
σw

σ

)
∂φw

∂z
= 0 (14)

Since ∂φ/∂y = ∂h/∂z, a suitable potential function F(y, z) can
be introduced for h and φ, defined in the following way

h = ∂F

∂y
, φ = ∂F

∂z
(15)

and, similarly, for the wall we have

hw = ∂Fw

∂y
, φw = ∂Fw

∂z
(16)

Using (11) and (15), Eq. (6) becomes

0 = 1

M2

(
∂2u

∂y2
+ ∂2u

∂z2

)
− ∂2F

∂y2
+ T (17)

Further, note that from Eqs. (13) and (15), we have

u = ∂2F

2
+ ∂2F

2
(18)
∂y ∂z
so that Eq. (17) can be fully expressed in terms of F and T . In
turn, Ohm’s law and current conservation at the wall can be ex-
pressed in terms of Fw . Eq. (17) can be solved provided that
T is known and suitable boundary conditions are given. As we
previously mentioned, we consider a constant heat flux aligned
with the applied magnetic field B so that the temperature field is
expressed as T = y. For the given temperature field, the veloc-
ity distribution is an odd function of y and an even function
of z. Due to the symmetry conditions, we need to consider
only one quarter of the duct’s cross-section. The formulation
of the boundary conditions for the present problem is the same
as in [14], therefore, details will be avoided here. The idea is
to decouple the electric current density and electric potential
function of the fluid, walls and surrounding medium, using the
thin wall approximation. That is, the walls are assumed to be
thin, tw � L, and the surrounding medium is assumed to be an
electrical insulator. With these assumptions a boundary condi-
tion for the fluid variables at the inside surface of each wall can
be derived, and the whole problem can be formulated in terms
of the potential function F . In particular, it can be shown that
continuity conditions at the fluid-wall interface, lead to the re-
lation [14]

Fw = F(y,1) = −c
∂F

∂z
(y,1) (19)

so that once F is determined electric currents in the walls can
be calculated using Eqs. (12), (16), and (19).

The duct flow is resolved using a composite core-side-
layer solution in which the core and side layer are treated
as a single solution which occupies the region 0 � y � a,
0 � z � 1 [14]. Since M is assumed to be sufficiently large,
the Hartmann layers and corner regions are ignored in the
sense that they are not resolved numerically and the non-slip
condition at the Hartmann walls is not satisfied. Nevertheless,
Hartmann layers are considered as a return path for electric
currents. This means that the amount of current that flows
through these layers and, consequently, its contribution to the
entropy generation rate, are properly calculated within the lim-
its of the approximation. This approach presents the advan-
tage that, while considering the main dynamic and dissipa-
tive effects of the Hartmann layers, the extremely expensive
numerical resolution of these layers is avoided. In fact, ve-
locity is properly calculated everywhere except within a dis-
tance O(M−1) of the Hartmann walls. On the other hand,
the side layers, where strong jets are formed, are fully re-
solved. Within the former approximations, the equation that
satisfies the potential F in the region 0 � y � a and 0 � z � 1,
is

∂2F

∂y2
− 1

M2

(
∂4F

∂y4
+ 2

∂4F

∂y2∂z2
+ ∂4F

∂z4

)
= y (20)

and the boundary conditions are [14]

∂3F

∂y∂z2
= 0,

∂F

∂y
= 0 at y = 0 (21)

∂3F

3
= 0,

∂F = 0 at z = 0 (22)

∂z ∂z
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∂F

∂y
− (

c + M−1)∂2F

∂z2
= M−1 ∂2F

∂y2
at y = a (23)

∂2F

∂y2
+ ∂2F

∂z2
= 0, F + c

∂F

∂z
= 0 at z = 1 (24)

In addition, the volume flux conservation condition has to be
satisfied. The system of Eqs. (20)–(24) is solved numerically
with a spectral collocation method [14,16], expressing the un-
known function F as a finite series in terms of Chebyshev
polynomials, namely,

F(y, z) =
NY∑
l=0

NZ∑
n=0

AlnT2l (y/a)T2n(z)

where Anl are coefficients to be determined and T2l(y/a) and
T2n(z) are odd and even Chebyshev polynomials of order 2l

and 2n, respectively. NY and NZ are the truncation limits in the
Chebyshev series in y and z, respectively. In order to reduce
the system of partial differential equations to a system of si-
multaneous linear algebraic equations for the coefficients Aln,
Gauss–Lobatto collocation points are used [16]:

yi = a cos

(
iπ

2NY

)
, for i = 0 to NY

zk = cos

[
kπ

2(NZ − 1)

]
, for k = 0 to (NZ − 1)

These points yield a good numerical resolution for the bound-
ary layers by concentrating points near the walls. The system of
simultaneous algebraic equations for the coefficients Aln of the
series is solved with the Gauss–Jordan elimination method. Nu-
merical results for pressure-driven MHD flows obtained with
this solution procedure [14] show a reasonable agreement with
experimental results [17].

For the case of buoyant MHD flows, results have been ver-
ified by comparison with flow patterns obtained by Bühler [1]
under different thermal conditions, where the governing equa-
tions were solved using asymptotic expansions and finite dif-
ferences. Fig. 2 shows the velocity distribution for the buoyant
flow in a square duct (a = 1) for c = 0.05 and M = 1000. The
velocity displays the typical characteristics of this kind of con-
vective MHD flows [1]. It is observed that strong jets appear
in the viscous side layers while inviscid layers are also formed
in the core. Since hot and cold walls are located at y = 1 and
y = −1, respectively, the jet velocity in the side layers is pos-
itive for y > 0, while it is negative for y < 0. For small values
of the wall conductance ratio all flow is carried by the viscous
and inviscid layers and the rest of the core remains almost stag-
nant [1].

4. Entropy generation rate

Let us now calculate the entropy generation rate for the
magnetoconvective flow. When irreversibilities caused by heat
transfer, fluid friction and electric conduction are considered
[5], the local entropy generation rate per unit length, Ṡ, can be
expressed in dimensionless form as
Fig. 2. Axial velocity as a function of coordinates y and z for the buoyant MHD
flow in a vertical square duct. M = 1000, c = 0.05.

Ṡ = 1

(T + T̂o)2

(
∂T

∂y

)2

+ Pr Ec

{
1

T + T̂o

[(
∂u

∂y

)2

+
(

∂u

∂z

)2]

+ M2

T + T̂o

(
j2
y + j2

z

) + M2

T̂o

tw/L

c

(
j2
wy + j2

wz

)}
(25)

where Ṡ is normalized by k/L2. Here, Pr = ρCν/k and Ec =
U2

o /�T C are the Prandtl and Eckert numbers, respectively, and
T̂o = To/�T is the dimensionless reference temperature. Note
that the last two terms of Eq. (25) correspond to the ohmic
dissipation due to electric conduction in the fluid and walls, re-
spectively. From Eqs. (12), (16), and (19) it is found that electric
currents in the walls are given by

jwy = c∂3F/∂y∂z2(y,1)

jwz = −c∂3F/∂y2∂z(y,1) (26)

so that ohmic dissipation in the walls is zero for an insulating
wall duct (c = 0). In addition to the wall conductance ratio, dis-
sipation in the walls is also governed by the ratio tw/L which is
assumed to be much less than unity. For numerical calculations
the value tw/L = 0.01 was used.

Since the temperature field is known and the velocity and
electric current density components are calculated numerically,
Eq. (25) can be evaluated at every point of the flow domain. In
fact, once the potential F is determined, the velocity is evalu-
ated using Eq. (18) while current density components in both
fluid and walls are calculated, respectively, from Eqs. (11) and
(15), and Eqs. (26). In Figs. 3(a) and 3(b), the local entropy gen-
eration rate (25) for c = 0 and c = 0.04, respectively, is shown
in one quarter of the duct (0 � y � 1, 0 � z � 1) as a function
of coordinates y and z. Both figures correspond to M = 1000,
T̂o = 300 and the product Pr × Ec = 10−6. This value is ob-
tained using the physical properties of liquid mercury at 27 ◦C
which was chosen because its common use in laboratory ex-
periments. In fact, it was found that the qualitative behavior of
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(a)

(b)

Fig. 3. (a) Local entropy generation rate, Ṡ, as a function of coordinates y and
z in the buoyant MHD flow in a vertical square duct with insulating walls.
M = 1000, c = 0, Pr × Ec = 10−6, T̂o = 300. (b) Local entropy generation
rate, Ṡ, as a function of coordinates y and z in the buoyant MHD flow in a ver-
tical square duct with thin conducting walls. M = 1000, c = 0.04, tw/L = 0.01,
Pr × Ec = 10−6, T̂o = 300.

the entropy generation rate is not very sensitive to parameters
T̂o and Pr × Ec. For all calculations, we considered a duct of
square cross-section (a = 1). The analysis of the local entropy
generation rate allows to determine the dissipative behavior of
the system. For instance, Fig. 3(a) shows that for an insulating
wall duct (c = 0) dissipation is concentrated in the side lay-
ers, that is, Ṡ takes high values in this region compared with
the core flow where it is close to zero. On the other hand, for a
thin conducting wall (c = 0.04), Fig. 3(b) shows that dissipation
is strongly concentrated in the core flow although a noticeable
increase is observed near the corner of the duct. Here, due to
Fig. 4. Global entropy generation rate, 〈Ṡ〉, as a function of wall conductance
ratio, c, for different values of the Hartmann number, M , in the buoyant MHD
flow in a vertical square duct. tw/L = 0.01, Pr × Ec = 10−6, T̂o = 300.

the high velocity jet, velocity gradients are enlarged and conse-
quently viscous dissipation increases. Notice, however, that the
highest value of the local entropy generation rate for the case
c = 0.04 is about 20% of the highest value of Ṡ for the case
c = 0. Therefore, dissipation is more intense in insulating than
in thin conducting wall ducts.

In order to get an explicit expression of the global entropy
generation rate per unit length, 〈Ṡ〉, Eq. (25) has to be integrated
in the cross-section of the duct. Once the integration is carried
out, the dependence on the y and z coordinates disappears and
〈Ṡ〉 becomes only a function of the relevant parameters govern-
ing the behavior of the flow, namely, M , c, Pr, Ec and T̂o. In
Fig. 4, the global entropy generation rate, 〈Ṡ〉, is presented as
a function of c for different M values. The parameters T̂o and
Pr × Ec are the same as in Figs. 3(a) and 3(b). It is observed
that, for a fixed M , 〈Ṡ〉 presents a minimum for a given value of
c. The value of the minimum is higher the higher the Hartmann
number. This is explained by an increase of Joule dissipation as
the Hartmann number grows. The minimum expresses the fact
that, for a given M , there is an optimum value of the wall con-
ductance ratio that minimizes the irreversibilities associated to
this MHD flow, provided the other parameters remain fixed. An
explanation of the existence of this minimum can be given by
looking at the dissipative behavior of the system. As it will be
shown below, the behavior of the total global entropy genera-
tion rate is mainly determined by irreversibilities associated to
ohmic dissipation.

Note first that the strong MHD effects that arise in high Hart-
mann number flows enhance the dissipation. On the one hand,
as M increases the velocity is reduced in the core and grows in
the side-wall layer where a peak velocity appears; therefore, ir-
reversibilities associated to viscous dissipation increase due to
the steep velocity gradients (see Fig. 2). On the other hand, the
electric current, which is a source of ohmic or Joule dissipa-
tion, in the liquid and walls, also increases with M . This means
that the entropy generation rate always increases with M when
a constant temperature gradient aligned to B is imposed on the
fluid. In fact, for high Hartmann numbers flows in ducts with
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(a)

(b)

Fig. 5. (a) Ohmic dissipation (j2
y + j2

z ) as a function of coordinates y and z in
the buoyant MHD flow in a vertical square duct with insulating walls. c = 0,
M = 1000. (b) Ohmic dissipation (j2

y + j2
z ) as a function of coordinates y and

z in the buoyant MHD flow in a vertical square duct with thin conducting walls.
M = 1000, c = 0.04, tw/L = 0.01.

either insulating or thin conducting walls, the contribution as-
sociated to ohmic dissipation in the total entropy generation
rate dominates over the other two contributions, namely, heat
conduction and fluid friction. This can be understood by look-
ing at Figs. 5(a) and 5(b) where the ohmic dissipation in the
fluid, namely the sum of the squares of jy and jz, as a function
of y and z is shown in one quarter of the duct for c = 0 and
c = 0.04, respectively. In the insulating wall case (Fig. 5(a))
all the current circulates within the fluid so that current exit-
ing the core penetrates the side layer before closing through
the Hartmann layer. Hence, in this case ohmic dissipation is
Fig. 6. Optimum wall conductance ratio, copt, as a function of the Hartmann

number, M . Pr × Ec = 10−6, T̂o = 300.

very strong in the side layer, as can be observed in Fig. 5(a).
For conducting walls (c 	= 0) a fraction of the current is carried
out by the walls so that the current in the boundary layers is
lower compared with the insulating wall case. Also, when c in-
creases, the electric wall resistance decreases and the current in
the fluid core increases. Therefore, ohmic dissipation is concen-
trated in the core flow, as is shown in Fig. 5(b). The qualitative
correspondence of Figs. 3(a)–(b) and Figs. 5(a)–(b) shows the
strong influence of ohmic dissipation in the dissipative behav-
ior of the flow. The existence of the minimum value of 〈Ṡ〉
can be explained as follows. For c = 0, the entropy generation
is governed by the ohmic dissipation created by electric cur-
rents circulating in the boundary layer and reaches high values
(see Fig. 3(a)). As c grows, the dissipation associated to elec-
tric conduction in the boundary layers near the channel walls
decreases since dissipation is enhanced in the fluid core and,
consequently, 〈Ṡ〉 decreases. However, for larger values of c,
the enhancement of ohmic dissipation in the fluid core becomes
dominant and 〈Ṡ〉 increases.

Fig. 6 shows the optimum wall conductance ratio, copt, as a
function of M for the same conditions as in previous figures.
It is observed that the higher the Hartmann number, the higher
copt. Note, however, that the optimum wall conductance ratio
that minimizes 〈Ṡ〉, seems to approach a limiting value as M

grows.

5. Conclusions

In this paper, we have shown that it is possible to find an op-
timum value of the wall conductance ratio that minimizes the
global entropy generation rate in a buoyant magnetoconvective
flow in a long vertical rectangular duct. The MHD flow was
solved numerically when the applied magnetic field is transver-
sal to the duct axis and normal to a pair of walls, while there is
a constant heat flux antiparallel to the applied field. For the nu-
merical solution, we followed an approach used for pressure
driven MHD flows in ducts with thin conducting or insulat-
ing walls [14]. With a core-side-layer solution valid for high
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Hartmann numbers, the velocity and the electric current den-
sity fields were determined using a spectral collocation method.
These fields were used to evaluate the local and global entropy
generation rate that considers irreversibilities caused by heat
transfer, fluid friction and electric conduction in both fluid and
walls. The transition from a thin conducting to an insulating
wall duct clearly reveals that the global entropy generation rate
reaches a minimum for a given wall conductance ratio, the value
of which increases with the Hartmann number when the other
parameters remain fixed. The existence of this minimum can
be explained by analyzing the detailed dissipative flow behav-
ior as the relevant parameters are varied. It was found that the
behavior of the total global entropy generation rate is mainly
determined by irreversibilities associated to ohmic dissipation.

The problem dealt with in this paper shows the kind of useful
information that can be obtained from the entropy generation
minimization method. In fact, from an optimum wall conduc-
tance ratio, it is possible to determine the geometry and/or ma-
terials that minimize irreversibilities for given flow conditions.
The methodology presented here can be applied to optimize
other MHD duct flows of practical relevance.
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